SOL4Py Sample: TOKYO2020_SPORT_PICTOGRAMS_Classifier
|
We have used pictograms on the web-site:
TOKYO2020-SPORT-PICTOGRAMS
We have used Keras ImageDataGenerator to augment the above pictograms:
AugmentedImagePreview
TrainingProcess of PictogramModel by using Keras ImageDataGenerator is shown below:
#******************************************************************************
#
# Copyright (c) 2018-2019 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************
# 2019/05/13
# 2019/09/13 Updated load_file method not to use a temporary image file.
# TOKYO2020_SPORT_PICTOGRAMS_Classifier.py
# encodig: utf-8
import sys
import os
import time
import traceback
from keras.preprocessing.image import load_img, img_to_array
from keras.utils.data_utils import get_file
sys.path.append('../../')
from SOL4Py.ZImageClassifierView import *
from TOKYO2020_SPORT_PICTOGRAMS_Model import *
############################################################
# Classifier View
class MainView(ZImageClassifierView):
# Class variables
# ClassifierView Constructor
def __init__(self, title, x, y, width, height):
super(MainView, self).__init__(title, x, y, width, height,
datasets={"PictogramModel": TOKYO2020_SPORT_PICTOGRAMS_Model.IMAGE_MODEL})
self.model_loaded = False
self.image_size = (TOKYO2020_SPORT_PICTOGRAMS_Model.IMAGE_WIDTH,
TOKYO2020_SPORT_PICTOGRAMS_Model.IMAGE_HEIGHT)
self.classes = self.get_class_names()
self.model = TOKYO2020_SPORT_PICTOGRAMS_Model(self.dataset_id, mainv=self)
if self.model.is_trained():
self.model.create()
self.model.load()
self.model.compile()
self.model_loaded = True
else:
print("You have to create a weight file")
print("Please run: python TOKYO2020_SPORT_PICTOGRAMS_Model.py " + str(self.dataset_id))
QMessageBox.warning(self, "TOKYO2020_SPORT_PICTOGRAMS_Classifier",
"Weight File Missing.\nPlease run: python TOKYO2020_SPORT_PICTOGRAMS_Model.py " + str(self.dataset_id))
self.show()
############################################################
#
if main(__name__):
try:
app_name = os.path.basename(sys.argv[0])
applet = QApplication(sys.argv)
main_view = MainView(app_name, 40, 40, 900, 500)
main_view.show ()
applet.exec_()
except:
traceback.print_exc()
Last modified:20 Sep. 2019