SOL4Py Sample: VGG16Classifier
|
#******************************************************************************
#
# Copyright (c) 2018-2019 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************
# 2019/03/05
# 2019/09/13 Updated load_file method not to use a temporary image file.
# VGG16Classifier.py
# encodig: utf-8
import sys
import os
import time
import traceback
from keras.utils import np_utils
from keras.preprocessing.image import load_img, img_to_array
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
from keras.applications.vgg16 import decode_predictions
sys.path.append('../../')
from SOL4Py.ZImageClassifierView import *
DATASET_VGG16 = 0
############################################################
# Classifier View
class MainView(ZImageClassifierView):
# Class variables
# ClassifierView Constructor
def __init__(self, title, x, y, width, height):
super(MainView, self).__init__(title, x, y, width, height,
datasets={"VGG16": DATASET_VGG16})
self.model_loaded = False
self.image_size = (224, 224)
# keras.preprocessing.image
self.image = None
# Load trained model
self.write("Loading VGG16 Model")
self.model = VGG16()
self.write("Loaded VGG16")
self.model_loaded = True
self.show()
def load_file(self, filename):
try:
image_cropper = ZPILImageCropper(filename)
# 1 Crop larget_central square region from an image of filename.
cropped_image = image_cropper.crop_largest_central_square_region()
# 2 Load an image from the cropped_fle.
self.image_view.set_image(img_to_array(cropped_image))
self.image_view.update_scale()
self.set_filenamed_title(filename)
# 3 Resize the cropped_image
self.image = cropped_image.resize(self.image_size)
# 4 Convert the self.image to numpy ndarray and remove alpha channel.
self.image = self.remove_alpha_channel(img_to_array(self.image))
# 5 Set self.nadarryy to the test_image_view.
self.test_image_view.set_image(self.image)
# 6 Convert self.image(ndarray) to an input data format applicable to the VGG16 model.
self.image = preprocess_input(self.image);
except:
self.write(formatted_traceback())
def classify(self):
self.write("------------------------------------------------------------")
self.write("classify start")
self.write(self.filename)
input = np.stack([self.image]);
predictions = self.model.predict(input)
results = decode_predictions(predictions, top=5)[0]
for result in results:
self.write(str(result))
self.write("classify end")
############################################################
#
if main(__name__):
try:
app_name = os.path.basename(sys.argv[0])
applet = QApplication(sys.argv)
main_view = MainView(app_name, 40, 40, 900, 500)
main_view.show ()
applet.exec_()
except:
traceback.print_exc()
Last modified:20 Sep. 2019