SOL4Py Sample: XGBClassifier

SOL4Py Samples





#******************************************************************************
#
#  Copyright (c) 2018 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************

 
# 2018/09/10

#  XGBClassifier.py
# This is based on the following program:
# xgboost/demo/guide-python/sklearn_examples.py
# https://github.com/dmlc/xgboost/blob/master/demo/guide-python/sklearn_examples.py

# encodig: utf-8

import sys
import os
import cv2
import time
import traceback
import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt
import numpy as np

import pickle
import xgboost as xgb

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.utils.validation import check_is_fitted

from PyQt5.QtCore    import *
from PyQt5.QtWidgets import *
from PyQt5.QtGui     import *
 
sys.path.append('../')

from SOL4Py.ZMLModel import *
from SOL4Py.ZApplicationView import *
from SOL4Py.ZLabeledComboBox import *
from SOL4Py.ZPushButton      import *
from SOL4Py.ZVerticalPane    import * 
from SOL4Py.ZTabbedWindow    import *
from SOL4Py.ZScalableScrolledDecisionTreeView import *
from SOL4Py.ZScalableScrolledFigureView import *

Iris         = 0
Digits       = 1
Wine         = 2
BreastCancer = 3

############################################################
# Classifier Model clas

class XGBClassifierModel(ZMLModel):

  ##
  # Constructor
  def __init__(self, dataset_id, mainv):
    super(XGBClassifierModel, self).__init__(dataset_id, mainv)
    
  def run(self):
    self.write("====================================")
    self._start(self.run.__name__)
    try:
      self.load_dataset()
      
      if self.trained():
        self.load()
      else:
        self.build()
        self.train()
        self.save()
        
      self.predict()
      self.visualize() 
    except:
      traceback.print_exc()
    self._end(self.run.__name__)
     
  def load_dataset(self):
    self._start(self.load_dataset.__name__)
    
    if self.dataset_id == Iris:
       self.dataset= datasets.load_iris()
       self.write("loaded iris dataset")

    if self.dataset_id == Digits:
       self.dataset= datasets.load_digits()
       self.write("loaded Digits dataset")
  
    if self.dataset_id == Wine:
       self.dataset= datasets.load_wine()
       self.write("loaded Wine dataset")

    if self.dataset_id == BreastCancer:
       self.dataset= datasets.load_breast_cancer()
       self.write("loaded BreastCancer dataset")
       
    attr = dir(self.dataset)
    self.write("dir:" + str(attr))
    if "feature_names" in attr:
      self.write("feature_names:" + str(self.dataset.feature_names))
    if "target_names" in attr:
      self.write("target_names:" + str(self.dataset.target_names))
 
    self.set_model_filename()
    self.view.description.setText(self.dataset.DESCR)
    
    X, y = shuffle(self.dataset.data, self.dataset.target, random_state=13)
    self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y, test_size=0.3, random_state=42)
    self.view.description.setText(self.dataset.DESCR)
    self._end(self.load_dataset.__name__)

 
  def build(self):
    self._start(self.create_model.__name__)
    self.model = xgb.XGBClassifier()
    self._end(self.create_model.__name__)

  def train(self):  
    self._start(self.train.__name__)
    start = time.time()
    # We use the following params for GridSearchCV
    params =  {'max_depth': [2,4,6], 'n_estimators': [50,100,200]}

    # Search hyper parameters by GridSearchCV
    grid_search = GridSearchCV(self.model, param_grid=params, verbose=1)

    grid_search.fit(self.X_train, self.y_train)

    self.write("GridSearch BestParams " + str(grid_search.best_params_) )
    self.write("GridSearch BestScore  " + str( grid_search.best_score_) )

    # Rebuild a XGBClassifier by using grid_search.best_params_
    self.model = xgb.XGBClassifier(**grid_search.best_params_)

    # Class fit method of the classifier
    self.model.fit(self.X_train, self.y_train)
    
    elapsed_time = time.time() - start
    elapsed = str("Train elapsed_time:{0}".format(elapsed_time) + "[sec]")
    self.write(elapsed)
    self._end(self.train.__name__)

  def predict(self):
    self._start(self.predict.__name__)
    self.pred_test  = self.model.predict(self.X_test)
    report = str (classification_report(self.y_test, self.pred_test) )
    self.write(report)
    self._end(self.predict.__name__)

  def visualize(self):
    cmatrix = confusion_matrix(self.y_test, self.pred_test)
    self.view.visualize(cmatrix)
 
############################################################
# Classifier View

class MainView(ZApplicationView):  
  # Class variables

  # ClassifierView Constructor
  def __init__(self, title, x, y, width, height):
    super(MainView, self).__init__(title, x, y, width, height)
    self.font        = QFont("Arial", 10)
    self.setFont(self.font)
    
    # 1 Add a labeled combobox to top dock area
    self.add_datasets_combobox()
    
    # 2 Add a textedit to the left pane of the center area.
    self.text_editor = QTextEdit()
    self.text_editor.setLineWrapColumnOrWidth(600)
    self.text_editor.setLineWrapMode(QTextEdit.FixedPixelWidth)

    # 3 Add a tabbed_window the rigth pane of the center area.
    self.tabbed_window = ZTabbedWindow(self, 0, 0, width/2, height)

    # 4 Add a figure_view to the right pane of the center area.
    self.description = QTextEdit()   
    self.description.setLineWrapColumnOrWidth(600)
    self.description.setLineWrapMode(QTextEdit.FixedPixelWidth)
    
    # 5 Add a figure to the right pane of the center area.
    self.figure_view = ZScalableScrolledFigureView(self, 0, 0, width/2, height)
       
    self.add(self.text_editor)
    self.add(self.tabbed_window)
    self.tabbed_window.add("Description",  self.description)
    self.tabbed_window.add("ConfusionMatrix", self.figure_view)
    self.figure_view.hide()
    
    self.show()
    
  def add_datasets_combobox(self):
    self.dataset_id = Iris
    self.datasets_combobox = ZLabeledComboBox(self, "Datasets", Qt.Horizontal)
    
    # We use the following datasets of sklearn to test XGBClassifier.
    self.datasets = {"Iris": Iris, "Digits": Digits, "Wine": Wine, "BreastCancer": BreastCancer}
    title = self.get_title()
    self.setWindowTitle( "Iris" + " - " + title)
    
    self.datasets_combobox.add_items(self.datasets.keys())
    self.datasets_combobox.add_activated_callback(self.datasets_activated)
    self.datasets_combobox.set_current_text(self.dataset_id)

    self.start_button = ZPushButton("Start", self)
    self.clear_button = ZPushButton("Clear", self)

#    self.start_button.setFont(self.font)
#    self.clear_button.setFont(self.font)
    
    self.start_button.add_activated_callback(self.start_button_activated)
    self.clear_button.add_activated_callback(self.clear_button_activated)

    self.datasets_combobox.add(self.start_button)
    self.datasets_combobox.add(self.clear_button)
    
    self.set_top_dock(self.datasets_combobox)
  
  def write(self, text):
    self.text_editor.append(text)
    self.text_editor.repaint()
    
  def datasets_activated(self, text):
    self.dataset_id = self.datasets[text]
    title = self.get_title()
    self.setWindowTitle(text + " - " + title)

  def start_button_activated(self, text):
    self.model = XGBClassifierModel(self.dataset_id, self)
    self.start_button.setEnabled(False)    
    self.clear_button.setEnabled(False)
    try:
      self.model.run()
    except:
      pass
    self.start_button.setEnabled(True)
    self.clear_button.setEnabled(True)
 
    
  def clear_button_activated(self, text):
    self.text_editor.setText("")
    self.description.setText("")
    self.figure_view.hide()
    if plt.gcf() != None:  
      plt.close()

  def visualize(self, cmatrix):
    self.figure_view.show()
    if plt.gcf() != None:
      plt.close()

    sns.set()
    df = pd.DataFrame(cmatrix)
    sns.heatmap(df, annot=True, fmt="d")
    self.figure_view.set_figure(plt)


############################################################
#    
if main(__name__):

  try:
    app_name  = os.path.basename(sys.argv[0])
    applet    = QApplication(sys.argv)
  
    main_view = MainView(app_name, 40, 40, 800, 500)
    main_view.show ()

    applet.exec_()

  except:
    traceback.print_exc()
    

Last modified: 6 May 2018