SOL4Py Sample: Torch_TOKYO2020_SPORT_PICTOGRAMS_Dataset
|
#******************************************************************************
#
# Copyright (c) 2018-2019 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************
# 2019/07/13
# Torch_TOKYO2020_SPORT_PICTOGRAMS_Dataset.py
# See: https://github.com/pytorch/tutorials/issues/78
import os
import glob
import traceback
from random import *
import numpy as np
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
import torchvision.transforms
from scipy.io import loadmat
from PIL import Image
class Torch_TOKYO2020_SPORT_PICTOGRAMS_Dataset(Dataset):
#TRAIN_DATA_DIR = "./dataset/train/"
#VALID_DATA_DIR = "./dataset/valid/"
##
# Constructor
#
def __init__(self, transform =None, root="./dataset/train/", image_file_extension = "jpg",):
self.transform = transform
self.images = None
self.root = root
self.image_folder = self.root + "/*/*." + image_file_extension
files = glob.glob(self.image_folder) # image_folder = "./dataset/*/*.jpg"
self.filenames_list = sorted(files)
self.classes = sorted( os.listdir(self.root) )
self.nclasses = len(self.classes)
print("NCLASSES {}".format(self.nclasses))
def __getitem__(self, index):
filename = self.filenames_list[index]
image = Image.open(filename).convert('RGB')
classname = os.path.basename(os.path.dirname(filename))
#print("category {}".format(classname))
class_index = self.get_class_index(classname)
if self.transform is not None:
image = self.transform(image)
return image, class_index
def __len__(self):
l = len(self.filenames_list)
return l
def get_class_index(self, classname):
index = 0
for i in range(len(self.classes)):
if self.classes[i] == classname:
index = i
break
return index
############################################################
#
if __name__ == "__main__":
try:
path = "./class_names.txt"
dataset = Torch_TOKYO2020_SPORT_PICTOGRAMS_Dataset()
classes = dataset.classes
with open(path, "w") as file:
for name in classes:
print(name)
file.write("{}\n".format(name))
except:
traceback.print_exc()
Last modified:20 Sep. 2019