SOL4Py Class: ZTorchImageClassifierView
|
Source code
#/******************************************************************************
#
# Copyright (c) 2018 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************/
# 2019/09/13
# ZTochImageClassifierView.py
# encodig: utf-8
import sys
import os
import time
import traceback
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torchvision
from torchvision import datasets, models, transforms
import json
import numpy as np
from PIL import Image
sys.path.append('../../')
from SOL4Py.ZImageClassifierView import *
############################################################
# Classifier View
class ZTorchImageClassifierView(ZImageClassifierView):
# Class variables
# ClassifierView Constructor
def __init__(self, title, x, y, width, height, datasets={"ImageModel": 0}):
super(ZTorchImageClassifierView, self).__init__(title, x, y, width, height, datasets)
self.resize = 256
self.crop = 224
pass
def preprocess(self, image, resize=256, crop=224):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225])
preprocessor = transforms.Compose([
transforms.Resize(resize),
transforms.CenterCrop(crop),
transforms.ToTensor(),
normalize
])
return preprocessor(image)
def image_crop(self, image, resize=256, crop=224):
crop_preprocessor = transforms.Compose([
transforms.Resize(resize),
transforms.CenterCrop(crop)
])
return crop_preprocessor(image)
def load_file(self, filename):
self.ndarray = None
try:
# 1 Open an original image file by PIL Image class.
self.image = Image.open(filename)
array = np.array(self.image)
self.image_view.set_image(np.array(self.image))
self.image_view.update_scale() #2019/09/13
# <modified date="2019/09/13">
array = self.remove_alpha_channel(array)
self.image = Image.fromarray(np.uint8(array))
#</modified>
self.image_tensor = self.preprocess(self.image, self.resize, self.crop)
self.image_tensor.unsqueeze_(0)
self.set_filenamed_title(filename)
# 2 Crop the image.
self.cropped_image = self.image_crop(self.image, self.resize, self.crop)
# 3 Convert the self.image to numpy ndarray.
self.ndarray = np.array(self.cropped_image)
# 4 Set self.nadarryy to the test_image_view.
self.test_image_view.set_image(self.ndarray)
except:
self.write(formatted_traceback())
def classify(self):
self.write("------------------------------------------------------------")
self.write("classify start.")
self.write(self.filename)
predictions = self.model(Variable(self.image_tensor))
predictions = nn.functional.softmax(predictions, dim=1)
TOP_FIVE = 5
# Get top 5 predictions
results = predictions.topk(TOP_FIVE)
#for result in results:
# self.write("result {}".format(result))
scores = results[0].data.numpy()
classids = results[1].data.numpy()
maxid = classids[0]
score = scores[0]
for i in range(TOP_FIVE):
label = self.classes[maxid[i]]
prob = score[i]
self.write("({}, {})".format(label, prob))
self.write("Classify end.")
############################################################
#
if main(__name__):
try:
app_name = os.path.basename(sys.argv[0])
applet = QApplication(sys.argv)
main_view = ZImageClassifierView(app_name, 40, 40, 900, 500)
main_view.show ()
applet.exec_()
except:
traceback.print_exc()
Last modified: 20 Sep. 2019
Copyright (c) 2019 Antillia.com ALL RIGHTS RESERVED.