SOL4Py Class: ZTorchMNISTModel
|
Source code
#/******************************************************************************
#
# Copyright (c) 2019 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************/
# 2019/07/10
# ZTorchMNISTModel.py
# This is a simple subclass to inherit torch cnn.Module
# This will be used as a base class, for example,
# AlexNet: https://github.com/icpm/pytorch-cifar10/blob/master/models/AlexNet.py
# See: https://github.com/vinhkhuc/PyTorch-Mini-Tutorials/blob/master/5_convolutional_net.py
# encodig: utf-8
import sys
import os
import time
import traceback
import numpy as np
import torch
import torchvision
import torch.nn as nn
import torch.nn.init as init
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.autograd import Variable
from tqdm import tqdm
sys.path.append('../')
from SOL4Py.torch.ZTorchModel import *
##
# ZTorchMNISTModel
class ZTorchMNISTModel(ZTorchModel):
#
# Constructor
def __init__(self, image_size, n_classes, model_filename):
super(ZTorchMNISTModel, self).__init__(image_size, n_classes, model_filename)
ch, h, w = image_size
#MNIST images size will be (1, 28, 28)
print("ch:{} h:{} w:{}".format(ch, h, w))
n_channels = 32
self.features = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=1),
nn.BatchNorm2d(16),
nn.Conv2d(in_channels=16, out_channels=n_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=n_channels, out_channels=n_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=1),
nn.BatchNorm2d(32)
)
self.n_features= n_channels * (h-2) * (h-2)
self.classifiers = nn.Sequential(
nn.Linear(in_features=self.n_features, out_features=512),
nn.ReLU(),
nn.Dropout(),
nn.Linear(in_features=512, out_features=n_classes)
)
def forward(self, input):
output = self.features(input)
output = output.view(output.size(0), self.n_features)
output = self.classifiers(output)
return output
Last modified: 20 Sep. 2019
Copyright (c) 2019 Antillia.com ALL RIGHTS RESERVED.