SOL4Py Class: ZTorchModel
|
Source code
#/******************************************************************************
#
# Copyright (c) 2019 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************/
# 2019/06/25
# ZTorchModule.py
# This is a simple subclass to inherit torch cnn.Module
# This will be used as a base class, for example,
# AlexNet: https://github.com/icpm/pytorch-cifar10/blob/master/models/AlexNet.py
# See: https://github.com/vinhkhuc/PyTorch-Mini-Tutorials/blob/master/5_convolutional_net.py
# encodig: utf-8
import sys
import os
import time
import traceback
import numpy as np
import torch
import torchvision
import torch.nn as nn
import torch.nn.init as init
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.autograd import Variable
from tqdm import tqdm
# Please install tqdm to display a progress bar by using conad commad
# conda install tqdm
from collections import OrderedDict
sys.path.append('../')
from SOL4Py.torch.ZTorchEpochChangeNotifier import ZTorchEpochChangeNotifier
from SOL4Py.torch.ZTorchModelCheckPoint import ZTorchModelCheckPoint
##
# ZTorchModel
class ZTorchModel(nn.Module):
#
# Constructor
# Please define your own Constructor in a subclass derived from this class
def __init__(self, image_size, n_classes, model_filename):
super(ZTorchModel, self).__init__()
self.n_classes = n_classes
self.image_size = image_size;
ch, h, w = image_size
print("ch:{} h:{} w:{}".format(ch, h, w))
self.model_filename = model_filename
# Please define your own forward method in a subclass derived from this class
def forward(self, input):
return input
def show_model_state(self):
for param in self.state_dict():
print(param, "\t", model.state_dict()[param].size())
# This method may be used without any modification in a subclass derived from this class.
# Sorry, this is a very ugly implementation, far from elegant.
# We have been using tqdm to display a progress bar in a console window(command line prompt).
def fit(self, train_loader,
test_loader,
callbacks,
epochs,
criterion,
optimizer):
self.epochs = epochs
self.callbacks = callbacks
self.train_loader = train_loader
self.test_loader = test_loader
if criterion == None:
criterion = nn.CrossEntropyLoss()
if optimizer == None:
optimizer = optim.SGD(self.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
device = self.get_device()
net = self.to(device)
### Start training
for callback in self.callbacks:
if type(callback) == ZTorchEpochChangeNotifier:
logs = {"epochs": epochs}
callback.on_train_begin(logs)
for epoch in range(self.epochs):
print("Training epoch:{}".format(epoch))
with tqdm(self.train_loader, ncols=100) as pbar:
train_loss, train_acc, val_loss, val_acc = 0, 0, 0, 0
# Change the net model to a training mode.
net.train()
for i, (images, labels) in enumerate(pbar):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = net(images)
loss = criterion(outputs, labels)
train_loss += loss.item()
train_acc += (outputs.max(1)[1] == labels).sum().item()
loss.backward()
optimizer.step()
pbar.set_postfix(OrderedDict(
epoch="{:>10}".format(epoch),
loss ="{:.4f}".format(loss.item())))
avg_train_loss = train_loss / len(self.train_loader.dataset)
avg_train_acc = train_acc / len(self.train_loader.dataset)
# Change the net model to a validation mode.
net.eval()
print("Validating epoch {}".format(epoch))
with torch.no_grad():
for images, labels in self.test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = net(images)
loss = criterion(outputs, labels)
val_loss += loss.item()
val_acc += (outputs.max(1)[1] == labels).sum().item()
avg_val_loss = val_loss / len(self.test_loader.dataset)
avg_val_acc = val_acc / len(self.test_loader.dataset)
logs = {"acc" : avg_train_acc,
"loss" : avg_train_loss,
"val_acc" : avg_val_acc,
"val_loss" : avg_val_loss, }
print("logs : {}".format(logs))
for callback in self.callbacks:
if type(callback) == ZTorchEpochChangeNotifier or type(callback) == ZTorchModelCheckPoint:
callback.on_epoch_end(epoch, logs)
# This method may be used without any modification in a subclass derived from this class
def evalute(self,
test_loader,
criterion,
epochs):
self.epochs = epochs
self.test_loader = test_loader
device = self.get_device()
net = self.to(device)
# Change net model to validation mode
net.eval()
### Start an evaluation by using the test_loader.
for epoch in range(self.epochs):
print("Validating epoch {}".format(epoch))
val_loss, val_acc = 0, 0
with torch.no_grad():
for images, labels in self.test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = net(images)
loss = criterion(outputs, labels)
val_loss += loss.item()
val_acc += (outputs.max(1)[1] == labels).sum().item()
avg_val_loss = val_loss / len(self.test_loader.dataset)
avg_val_acc = val_acc / len(self.test_loader.dataset)
logs = {"val_acc" : avg_val_acc,
"val_loss" : avg_val_loss, }
print("logs : {}".format(logs))
def save(self):
torch.save(self.state_dict(), self.model_filename)
print("Saved model parameters to " + self.model_filename)
def get_device(self):
return "cuda" if torch.cuda.is_available() else "cpu"
def predict(self, input):
device = self.get_device()
input = input.to(device)
output = self(input)
index = output.data.cpu().numpy().argmax()
#print("predict index: {}".format(index))
return index
def is_trained(self):
rc = False
if os.path.exists(self.model_filename):
rc = True
return rc
def load_model(self):
if os.path.isfile(self.model_filename):
# Load trained model parameters file.
dic = torch.load(self.model_filename)
self.load_state_dict(dic)
print("Loaded model file {}.".format(self.model_filename))
else:
raise Exception("Not found file:" + self.model_filename)
def summary(self):
#, input_size):
#input_size will take a tuple(ch, h, w)
#summary(self, input_size=input_size)
print(self)
Last modified: 20 Sep. 2019
Copyright (c) 2019 Antillia.com ALL RIGHTS RESERVED.