SOL4Py Sample: RoadSignsClassifier
|
We have used RoadSigns on the web-sites to create a samll dataset to RoadSignsModel:
JAF
JAPAN DRIVER'S LICENCE
Road signs in Japan
See aslo the web site: Traffic Signs Classification with a Convolutional Neural Network
Our small dataset example is shown below. The images in each roadsign category are generated by using Keras ImaeDataGenerator from the base images on the web-sites above.
The size of each image in the small dataset is (88, 88, 3), which implys 88 pixels x 88 pixels x 3 channels. This may be a better recognizable size
than (32, 32, 3) to humans and CNN model.
We have used Keras ImageDataGenerator to augment the above small dataset:
AugmentedImagePreview
TrainingProcessMonitor Graphs of RoadSignsModel by using Keras ImageDataGenerator are shown below:
#******************************************************************************
#
# Copyright (c) 2018-2019 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************
# 2019/05/29
# 2019/09/13 Updated load_file method not to use a temporary image file.
# RoadSignslassifier.py
# encodig: utf-8
import sys
import os
import time
import traceback
sys.path.append('../../')
from SOL4Py.ZImageClassifierView import *
from RoadSignsModel import *
############################################################
# Classifier View
class MainView(ZImageClassifierView):
# Class variables
# ClassifierView Constructor
def __init__(self, title, x, y, width, height):
super(MainView, self).__init__(title, x, y, width, height,
datasets={"RoadSigns": 0})
self.model_loaded = False
self.image_size = (RoadSignsModel.IMAGE_WIDTH, RoadSignsModel.IMAGE_HEIGHT)
# Target image to be classified by this classifer.
self.image = None
self.classes = self.get_class_names()
self.model = RoadSignsModel(self.dataset_id, mainv=self)
if self.model.is_trained():
self.model.create()
# Load trained model provided trained.
self.model.load()
self.model.compile()
#self.model.evaluate()
self.model_loaded = True
else:
print("You have to create a model file and weight file")
print("Please run: python ImageModel.py " + str(self.dataset_id))
QMessageBox.warning(self, "RoadSignsClassifier",
"Model/Weight File Missing.\nPlease run: python RoadSignsModel.py " + str(self.dataset_id))
self.show()
def classify(self):
self.write("------------------------------------------------------------")
self.write("classify start")
self.write(self.filename)
prediction = self.model.predict(self.image)
# Get top five pairs of score and classname
result = self.get_top_five(prediction, self.classes)
self.write("Predictions:")
for score, name in result:
self.write(" {:.4f} {}".format(score, name))
self.write("classify end")
############################################################
#
if main(__name__):
try:
app_name = os.path.basename(sys.argv[0])
applet = QApplication(sys.argv)
main_view = MainView(app_name, 40, 40, 900, 500)
main_view.show ()
applet.exec_()
except:
traceback.print_exc()
Last modified:20 Sep. 2019