SOL4Py Sample: Torch_TOKYO2020_SPORT_PICTOGRAMS_Classifier
|
We have used pictograms on the web-site:
TOKYO2020-SPORT-PICTOGRAMS
We have created the following python scripts to create Torch_TOKYO2020_SPORT_PICTOGRAMS_Classifier sample program.
Torch_TOKYO2020_SPORT_PICTOGRAMS_Dataset
Torch_TOKYO2020_SPORT_PICTOGRAMS_DataSetAugmentor
Torch_TOKYO2020_SPORT_PICTOGRAMS_Model
We have used flow_from_directory method of ZImageDataGenerator class to augment each image of TOKYO2020-SPORT-PICTOGRAMS.
The training process of Torch_TOKYO2020_SPORT_PICTOGRAMS_Model by using dataset generated by ZImageDataGenerator can be monitored by
TrainingProcessMonitor as shown below:
#******************************************************************************
#
# Copyright (c) 2018-2019 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#******************************************************************************
# 2019/07/13
# Torch_TOKYO2020_SPORT_PICTOGRAMS_Classifier.py
# encodig: utf-8
import sys
import os
import time
import traceback
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
sys.path.append('../../')
from SOL4Py.torch.ZTorchImagePreprocessor import ZTorchImagePreprocessor
from SOL4Py.ZTorchImageClassifierView import *
from Torch_TOKYO2020_SPORT_PICTOGRAMS_Model import *
TOKYO2020_SPORT_PICTOGRAMS = 0
############################################################
# Classifier View
class MainView(ZTorchImageClassifierView):
# Class variables
# ClassifierView Constructor
def __init__(self, title, x, y, width, height):
super(MainView, self).__init__(title, x, y, width, height,
datasets= {"TOKYO2020_SPORT_PICTOGRAMS": TOKYO2020_SPORT_PICTOGRAMS})
self.model_loaded = False
self.resize = 64 #128
self.crop = 64 #128
self.image = None
# Load trained model
self.classes = self.get_class_names()
self.model = Torch_TOKYO2020_SPORT_PICTOGRAMS_Model(self.dataset_id, mainv=self)
if self.model.is_trained():
self.model.load_dataset()
self.model.create()
self.model.load() # Load a trained weight
self.model.evaluate()
self.model_loaded = True
else:
print("You have to create a model file")
print("Please run: python TOKYO2020_SPORT_PICTOGRAMS_Model.py " + str(self.dataset_id))
QMessageBox.warning(self, "Torch_TOKYO2020_SPORT_PICTOGRAMS_Classifier",
"Mode file is missing.\nPlease run: python Torch_TOKYO2020_SPORT_PICTOGRAMS_Model.py " + str(self.dataset_id))
self.show()
def classify(self):
self.write("--------------------------------------------")
self.write("classify start.")
self.write(self.filename)
index = self.model.predict(self.cropped_image)
label = self.classes[index]
self.write("Prediction: {}".format(label) )
self.write("classify end.")
############################################################
#
if main(__name__):
try:
app_name = os.path.basename(sys.argv[0])
applet = QApplication(sys.argv)
main_view = MainView(app_name, 40, 40, 900, 500)
main_view.show ()
applet.exec_()
except:
traceback.print_exc()
Last modified:20 Sep. 2019