SOL9 2.0 Class: Direct3DX12Cylinder
|
Source code
/******************************************************************************
*
* Copyright (c) 2016 Antillia.com TOSHIYUKI ARAI. ALL RIGHTS RESERVED.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer.
*
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Direct3DX12Sphere.h
*
*****************************************************************************/
//2016/10/20
//This is based on MakeCylinder function in the following code.
// C:\Program Files (x86)\Microsoft DirectX SDK (June 2010)\Samples\C++\DXUT\Optional\DXUTShape.cpp
#pragma once
#include <math.h>
#include <sol/direct3d12/Direct3DX12Shape.h>
namespace SOL {
class Direct3DX12Cylinder : public Direct3DX12Shape {
public:
Direct3DX12Cylinder(
__in ID3D12Device* device,
__in float radius1 = 1.0f,
__in float radius2 = 1.0f,
__in float length = 1.0f,
__in UINT slices = 8,
__in UINT stacks = 8 )
:Direct3DX12Shape(device)
{
if (device == NULL) {
throw IException("Invalid devie.");
}
if (radius1 < 0.0f || radius2 < 0.0f || length < 0.0f || slices < 2 || stacks < 2) {
throw IException("Invalid parameter");
}
// Create a vertexBuffer and an indexBuffer
createCylinder(radius1, radius2, length, slices, stacks);
}
//The following createCylinder is based on MakeCylinder function in the following code.
//
//C:\Program Files (x86)\Microsoft DirectX SDK (June 2010)\Samples\C++\DXUT\Optional\DXUTShape.cpp
//--------------------------------------------------------------------------------------
// File: DXUTShapes.cpp
//
// Shape creation functions for DXUT
//
// Copyright (c) Microsoft Corporation. All rights reserved
//--------------------------------------------------------------------------------------
void createCylinder(float fRadius1,
float fRadius2, float fLength, UINT uSlices, UINT uStacks )
{
UINT i, j;
const int CACHE_SIZE = 240*2;
// Sin/Cos caches
float sinI[CACHE_SIZE], cosI[CACHE_SIZE];
for( i = 0; i < uSlices; i++ ) {
sinI[i] = sinf((float)(2.0f * MATH_PI * i / uSlices));
cosI[i] = cosf((float)(2.0f * MATH_PI * i / uSlices));
// sincosf( 2.0f * D3DX_PI * i / uSlices, sinI + i, cosI + i );
}
UINT cFaces = ( uStacks + 1 ) * uSlices * 2;
UINT cVertices = 2 + ( uStacks + 3 ) * uSlices;
D3D12PosNormalVertex* vertices = new D3D12PosNormalVertex[cVertices];
// Compute side normal angle
float fDeltaRadius = fRadius2 - fRadius1;
float fSideLength = sqrtf( fDeltaRadius * fDeltaRadius + fLength * fLength );
float fNormalXY = ( fSideLength > 0.00001f ) ? ( fLength / fSideLength ) : 1.0f;
float fNormalZ = ( fSideLength > 0.00001f ) ? ( -fDeltaRadius / fSideLength ) : 0.0f;
// Generate vertices
D3D12PosNormalVertex* pVertex = vertices;
float fZ, fRadius;
DWORD iVertex;
// Base cap (uSlices + 1)
fZ = fLength * -0.5f;
fRadius = fRadius1;
iVertex = 0;
pVertex->pos = XMFLOAT3( 0.0f, 0.0f, fZ );
pVertex->normal = XMFLOAT3( 0.0f, 0.0f, -1.0f );
pVertex++;
//if( pPointReps != NULL )
// pPointReps[iVertex] = iVertex;
iVertex++;
for( i = 0; i < uSlices; i++ )
{
pVertex->pos = XMFLOAT3( fRadius * sinI[i], fRadius * cosI[i], fZ );
pVertex->normal = XMFLOAT3( 0.0f, 0.0f, -1.0f );
pVertex++;
// link into stack vertices, which follow
//if( pPointReps != NULL )
// pPointReps[iVertex] = iVertex + uSlices;
iVertex++;
}
// Stacks ((uStacks + 1)*uSlices)
for( j = 0; j <= uStacks; j++ )
{
float f = ( float )j / ( float )uStacks;
fZ = fLength * ( f - 0.5f );
fRadius = fRadius1 + f * fDeltaRadius;
for( i = 0; i < uSlices; i++ )
{
pVertex->pos = XMFLOAT3( fRadius * sinI[i], fRadius * cosI[i], fZ );
pVertex->normal = XMFLOAT3( fNormalXY * sinI[i], fNormalXY * cosI[i], fNormalZ );
pVertex++;
//if( pPointReps != NULL )
// pPointReps[iVertex] = iVertex;
iVertex++;
}
}
// Top cap (uSlices + 1)
fZ = fLength * 0.5f;
fRadius = fRadius2;
for( i = 0; i < uSlices; i++ )
{
pVertex->pos = XMFLOAT3( fRadius * sinI[i], fRadius * cosI[i], fZ );
pVertex->normal = XMFLOAT3( 0.0f, 0.0f, 1.0f );
pVertex++;
// link into stack vertices, which precede
//if( pPointReps != NULL )
// pPointReps[iVertex] = iVertex - uSlices;
iVertex++;
}
pVertex->pos = XMFLOAT3( 0.0f, 0.0f, fZ );
pVertex->normal = XMFLOAT3( 0.0f, 0.0f, 1.0f );
pVertex++;
//if( pPointReps != NULL )
// pPointReps[iVertex] = iVertex;
iVertex++;
uint16_t* indices = new uint16_t[ cFaces * 3 ];
// Generate indices
uint16_t * pwFace = indices;
UINT uRowA, uRowB;
// Z+ pole (uSlices)
uRowA = 0;
uRowB = 1;
for( i = 0; i < uSlices - 1; i++ )
{
pwFace[0] = ( WORD )( uRowA );
pwFace[1] = ( WORD )( uRowB + i );
pwFace[2] = ( WORD )( uRowB + i + 1 );
pwFace += 3;
}
pwFace[0] = ( WORD )( uRowA );
pwFace[1] = ( WORD )( uRowB + i );
pwFace[2] = ( WORD )( uRowB );
pwFace += 3;
// Interior stacks (uStacks * uSlices * 2)
for( j = 0; j < uStacks; j++ )
{
uRowA = 1 + ( j + 1 ) * uSlices;
uRowB = uRowA + uSlices;
for( i = 0; i < uSlices - 1; i++ )
{
pwFace[0] = ( WORD )( uRowA + i );
pwFace[1] = ( WORD )( uRowB + i );
pwFace[2] = ( WORD )( uRowA + i + 1 );
pwFace += 3;
pwFace[0] = ( WORD )( uRowA + i + 1 );
pwFace[1] = ( WORD )( uRowB + i );
pwFace[2] = ( WORD )( uRowB + i + 1 );
pwFace += 3;
}
pwFace[0] = ( WORD )( uRowA + i );
pwFace[1] = ( WORD )( uRowB + i );
pwFace[2] = ( WORD )( uRowA );
pwFace += 3;
pwFace[0] = ( WORD )( uRowA );
pwFace[1] = ( WORD )( uRowB + i );
pwFace[2] = ( WORD )( uRowB );
pwFace += 3;
}
// Z- pole (uSlices)
uRowA = 1 + ( uStacks + 2 ) * uSlices;
uRowB = uRowA + uSlices;
for( i = 0; i < uSlices - 1; i++ )
{
pwFace[0] = ( WORD )( uRowA + i );
pwFace[1] = ( WORD )( uRowB );
pwFace[2] = ( WORD )( uRowA + i + 1 );
pwFace += 3;
}
pwFace[0] = ( WORD )( uRowA + i );
pwFace[1] = ( WORD )( uRowB );
pwFace[2] = ( WORD )( uRowA );
pwFace += 3;
createVertexBuffer(vertices, sizeof(D3D12PosNormalVertex) * cVertices, sizeof(D3D12PosNormalVertex), cVertices);
createIndexBuffer(indices, sizeof(UINT) * cFaces * 3, cFaces * 3 );
delete[] vertices;
delete[] indices;
}
~Direct3DX12Cylinder()
{
}
};
}
Last modified: 5 May 2019
Copyright (c) 2009-2019 Antillia.com ALL RIGHTS RESERVED.